

Surface currents : Key parameter for ocean/waves coupled system of CMEMS

L. Aouf⁽¹⁾, S. Law-Chune⁽³⁾, H. Giordani⁽²⁾, Alice Dalphinet⁽¹⁾

⁽¹⁾ Météo-France, (DirOP/MAR)
 ⁽²⁾ Météo-France/CNRM
 ⁽³⁾ Mercator Ocean

Workshop of Doppler Oceanography from Sapce From science to technology and applications, 10 October 2018, Brest

- **1- Motivation**
- 2- currents in CMEMS-GLO wave system
- 3- coupling waves and ocean
- 4- Tropical-Atlantic setting and preliminary results
- **5- Conclusions**

High waves during typhoon Meranti (Sep. 2016)

Strong currents (~2 m/s) in opposite direction of long swell and high tide conditions (almost 3 m)

18 meters of SWH recorded at Taiwanese buoy on 13 Sep. 2016 At 06:00 (Source from Jason YU)

Typhoon track

Impact of currents on waves CMEMS-V4 vs CMEMS-V3

MOTIVATION

Impact of surface currents forcing on wave forecasting : upgrade of CMEMS-GLO waves system

Coupling waves with ocean : improvement and validation

Preparation of the earth system : understanding how the waves and currents affects the ABL (numerical tropical atlantic study)

Waves modulation Induced by currents observed by SAR In the Agulhas

The current operational wave system MFWAM for CMEMS-GLO waves (marine.copernicus.eu)

- Global grid of 10 km
 3-hourly atmospheric forcing from IFS-ECMWF.
- Improved wave physics for better surface stress for the
- coupling with oceanDaily surface currents forcing
- from CMEMS global ocean system
- 3-hourly assimilation of 5 altimeters in operations (Jason 2 & 3 Saral, Cryosat-2, Sentinel-3A)

Date: 2018-08-05 00:00 ÚTC

enus from global wave model MFWAM of Meteo-France with ECMWF forcing and a wave significant height

Snapshot of SWH with features Induced by surface currents Forcing in the Agulhas (5 Aug. 2018)

Units: n

Impact of surface currents on CMEMS-GLO SWH March 2017

Surface currents CMEMS-GLO-PHYS

Validation of MFWAM forced by NEMO currents during 2014 (ORCA25 ou PSY3)

25.0

-10.0 -12.5 -15.0 -17.5 -20.0 -22.5 -25.0 -27.5 -30.0

-7.5 -10.0 -12.5 -15.0 -17.5 -20.0 -22.5 -25.0 -27.5

Improvement of SI (%) : MFWAM + ORCA025

improvement of SI (%) : MFWAM + PSY3

Run of MFWAM with ECMWF winds and 3-hourly surface currents from NEMO-ORCA25 (free run) and 1.4° PSY3 from Mercator ocean

ZONE	Improvement of scatter index	
	ORCA25	PSY3
Global	+ 2.88 %	+4.33%
Atlantic	+ 6.27 %	+10.15 %
Pacific	+ 4.47%	+8.45%
IBI	+ 5.56 %	+ 7.51 %
Mediterranean	+ 4.46 %	+8.21 %
Indian Tropics	+4.47 %	+9.57%
Benguela	+ 7.38 %	+ 10.33 %
Californian upwelling	+2.34 %	+5.32 %
Gulf Stream	+8.70 %	+ 13.68 %
Kuroshio	+8.63 %	+14.51 %

3-years global Ocean/waves coupling 2014-2016

Coupling NEMO ocean model and the wave model MFWAM)

- Momentum flux modified by the waves (from the model MFWAM)
- Stokes-Coriolis forcing
- Wave breaking inducing turbulence in the ocean mixed layer

(Law-Chune 2018 Ocean Dynamics)

MFWAM-0.2° (ECMWF wind forcing) NEMO-PSY4 -0.2° 6-hourly wave forcing

3-years ocean/waves coupling with MFWAM and NEMO-PSY4 2014-2016

no units

tauoc/taua AVERAGE ; 3years_2014-2016

Average of ratio total stress and stress released to oceans

Average of Stokes

forcing

High CB coefficient Induced enhanced ocean mixed layer

Craig and Banner coefficient AVERAGE ; 3years_2014-2016

Stokes current magnitude MEAN ; 3years 2014-2016

Validation with L4 surface currents from altimetry (CMEMS) Improvement skill (2014-2016)

Wave breaking activated

Contribution of different coupling processes

ENERGY Current magnitude RMSE improvement

(See paper of Law-CHune 2018)

Ocean/waves coupling during storm Petra on CMEMS-IBI (5 February 2014)

coupling

More than 14 m of SWH near brittany

MFWAM-IBI 10km grid size NEMO-IBI 1/36° grid size 1-year (2014) run with three coupling processes

Impact of ocean/waves on 5 February 2014 (3:00 UTC) during storm Petra

Difference between **Control and** Waves coupled experiments

3000

4000

5000

-18

-15

Profiles on 5 February 2014 storm Petra EXP01-EXP08_bis EXP01-EXP08 bis Lat = 45.8N Lat = 45.8N 0 0 °C psu 1000 1000 0.5 0.8 0.4 Profondeur (m) 0.6 0.3 2000 2000 0.4 0.2 0.2 0.1 0 0 3000 3000 -0.2 -0.1 -0.2 -0.4 Ocean Ocean -0.3 4000 4000 -0.6 -0.4 -0.8 Salinity Temp -0.5 -1 5000 5000 -12 -18 -15 -12 -9 -6 -18 -15 -9 -6 Longitude Longitude EXP01-EXP08 bis EXP01-EXP08 bis Lat = 45.8N Lat = 45.8N 0 0 m/s m/s 1000 1000 0.2 0.2 0.16 0.16 Profondeur (m) Profondeur (m) 0.12 0.12 2000 2000 0.08 0.08 Ucomp 0.04 0.04

0

-0.04

-0.08

-0.12

-0.16

-0.2

3000

4000

5000

-15

-18

-12

Vcomp

-9

-6

0

-0.04

-0.08

-0.12

-0.16

-0.2

Longitude Longitude Significant impact of waves on surface currentsl until 1500 m

-6

-12

-9

Surface currents impact on waves Validation with altimeters

Surface currents from coupled NEMO-IBI improves slightly scatter Index and bias of SWH

Validation with Jason-2 and Saral wave data 'avance

Impact of currents forcing on waves during storm Petra on 5 February 2014 12UTC

Significant wave height

Mean period Tm02

Difference on mean parameters from run of MFWAM-IBI without and with surface currents from coupled NEMO

What processes control the wind in the Atm. boundary layer of the ITCZ (June 2010 SST anomaly)

Reference Vector

wind convergence

Upward vertical velocity (*i.e.* horizontal wind convergence) and Precipitation are correlated with highest SSTs in the ITCZ

Subsidence close to the equator is induced by the cold tongue

What processes control the wind in the boundary layer of the ITCZ

- Meso-NH :

Lafore et al. (1998) ; Lac et al. (2018) Non hydrostatic anelastic model covering a wide range of scales

u, v,w, θ , 4 water phases as pronostic variables Full physical package

- Surface (SURFEX interface) Interactive continent with prescribed vegetation Default Ocean-atmosphere fluxes from ECUME3

> Stress forcing from Model MFWAM +currents

- Numerical Configuration :

Domain Extension : 65W-19E 21S-21N $\Delta x = \Delta y = 10$ km with convection parametrized (900x480 points) Δz from 10 m to 600 m with 70 verticals levels

1-month simulation from 1-30 June 2010, with hourly output ! Initial fields and lateral boundary conditions from ERAInterim

SST prescribed (ERA-I/6h) SST from NEMO-Tropical-Atlantic

Wind forcing for MFWAM run Validation with altimeters

Validation with altimeters of MFWAM-Tropic (10 km) June 2016

Validation with altimeters of 2 runs of MFWAM with different forcings : analysed ECMWF, winds from MESO-NH with SST from NEMO Good performance of run with MESO-NH winds with scatter index of 12,3 % and negative bias of 8 cm.

The run with analysed ECMWF winds shows better scatter index because of 4DVAR assimilation. However, the run with MESO-NH reduces the bias by 50 %

Impact of surface currents on the ABL

Wave regime (swell height/SWH)

Impact of currents forcing 15 June 2010 at 0:00 UTC

-2

Evaluating the currents changing stress feedback to the ABL (forcing MESO-NH)

Impact of currents on sress (drag coef.) on 15 June 2010 at 0:00 UTC

ETEO FRANCE

Jugours un temps d'avance

Conclusions and perspectives

Upgrade of MFWAM for CMEMS is well skilled for accounting waves/ currents interaction.

The ocean/waves coupling induced a an improvement on surface key parameters (global and IBI).

--> Yes we need surface currents measurements from space to improve and validate the ocean/waves coupling

Works are on going for the impact of waves and currents on the atmospheric boundary layer

Validation of SST : OSTIA-Level-4

RMSE improvement skill

STOKES SST RMSE improvement

