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Delay-Doppler Altimetry
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Launched in 2016, Sentinel-3A has been measuring oceans, land, ice to
monitor and understand large-scale global dynamics and to provide
critical information for marine operations, and more.

On-board S3A, the SRAL instrument is a Ku-Band Delay-Doppler
altimeter (also called SAR altimeter):

- Nadir looking instrument

- Doppler capability (coherent pulses) — Bdop = 15kHz

- High PRF (18kHz)

- Closed-bursts chronogram

The Doppler bandwidth is used through an unfocused SAR processing
to improve the instrument azimuth resolution (~320m). Then multi-
looking is applied for speckle noise reduction (High resolution altimetry
vs conventional/low resolution altimetry (Jason’s missions)

Higher performances wrt conventional altimetry and better meso-scale
signals observation.

Unfocused SAR (SAR mode)
[Raney, 1998]

1 burst, = 1 look;

Ground track

"

~300m
* Coherent processing on a burst (3.5ms)
=» Along-track resolution ~ 300 m

* Multi-looking (sum of independent looks)
= Noise level reduction




Rationale ¢
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In preparation of SKIM mission,

what can we learn from nadir altimeter doppler signals?

A priori, not so much...

- Nadir looking instrument

- Not designed to measure surface velocities
- Wave orbital motion should be averaged

== S0, we should see only the satellite velocity...!

However, our curiosity has led us to look.




Phase of radar altimeter signals ¢
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After deramping and range compression, the resulting signal S, acquired by a radar altimeter at time n on a nadir
point scaterrer can be approximated as:

Relative Residual
Range Video
Phase Phase

1 RVP << 1
S;(tg,n) = G sinc[ B (tg — t(n)] . exp <2nj (fot(n) + Ear(n)2> Can be negligible

/ ! !

Time delay (fast-time) Bandwidth Lo
irp rate

Slow time two-way travel time
Carrier frequency

=== S.,,, acquired at time n + PRI, can be expressed as:
Si(tg,n + PRI ) = G sinc[ B (tg —t(n + PRI)].exp(2mj (f.7(n + PRI))
With t(n + PRI) = t(n) + 2 * RadiaVelocity * PRI /c

Before range compression, S,,; can be aligned in range wrt S, (with 2*RadVel*PRI/c phase rotation in range).
With this correction can be written as:

Si(tg,m + PRI ) = G sinc[ B(tg —1(n)].exp(2mjf.t(n) + 4njf, * RadVel x PRI /c)




Pulse-pair processing on radar altimeter pulses = Cgs o

We apply a pulse-pair processing to two consecutive radar pulses.

The measured phase can be expressed as:
b = arg( 5;S;31)
® = —4nf. *» RadVel * PRI/c
® = —4nf,. * RadVel * PRI/c

This gives directly the Doppler Frequency of the signal S,

,7 = F:—Z*fC*RadVel/C:_fd

== The Doppler anomaly is the deviation between the measured frequency and the Doppler from the satellite
velocity.




Don’t forget the Mean Sea Surface Slopes ! N [
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Application on Sentinel-3/SRAL SARM data B -
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S3/SRAL SARM Chronogram:

SAR mode (Ku-Band)
PRI = 56us

Closed-BURST mode
| Distance between 2 consecutive pulses ~40cm| |

~ Distance anng-tralack ~25m |
64 pulses per burst 2 3,5ms

— = 4 BURSTS in a radar cycle (50ms ~ 20Hz)
== For each radar cycles:
—_— - Pulses are calibrated (corrected for all instrumental phase)

=l - Range compressed
- Pulse-pair technique is applied on 63 pairs in each burst (total of 252 phase signals on 128 gates)
- All PP phase signals are averaged through the cycle
- The phase is measured @ epogq gate (given by the retracking of Doppler power echoes) — linear interpolation

is used
- The theoretical Doppler frequency is removed to get the Doppler anomaly




Application on Sentinel-3/SRAL SARM data ¢

Over ocean, we intend to measure the doppler anomaly on the first range cell.

Epoq is given by the retracking of the altimetry echo.

Doppler Frequency (Hz)
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Validation over the transponder

Comparison between PulsePair and POD Velocity (m/s) PulsePalr - POD velacity (mys)
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Application over ocean - 1st case . c$ 3
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Application over ocean - 2" case ¢
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Application over ocean - Global - ASC TRACKS ¢
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Doppler anomaly (Hz) SWH (m)
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Application over ocean - Global - DESC TRACKS ¢

Doppler anomaly (Hz)
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Conclusion & Perspectives ¢
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what can we learn from Doppler signals of nadir altimeter?
More than expected!

Clear Doppler anomalies (up to 50Hz) are observed over ocean @ nadir:

- Correlated to high SWH (elsewhere, the Doppler anomaly is almost null)

- Sign of Doppler anomaly depends on sign of radial velocity (or tracks direction)
- The measured Doppler is always lower than the Doppler from satellite velocity
- Correlated to wind speed?

— What'’s the origin of this effect?
_— Is it applicable/transferrable to SKIM?

More investigation is planned is the coming weeks to bring answers:
Investigating the PP algorithm implementation

Processing more data

Comparison with models (WW3)

Using simulator
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