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Mission architecture
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Sentinel-1 D STEREOID-A

> 250 km
STEREOID-B
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Mission objectives (1 min overview)

Solid Earth
• 3D surface deformation 

(volcanic, seismic, 
landslides)

• Sudden topographic 
changes

Cryosphere
• Glacier and ice sheets 

topography/volume/mas
s change

• High resolution ice fows/
deformation

• Sea ice drift and 
topography

• Marginal Ice Zone 
variability

Oceans
• High resolution surface 

currents and wave data 
for coastal processes

• Small-scale (100 m to 10 
km) ocean dynamics 

• Surface deformation feld 
() Divergence/strain, 
vorticity, shear

• Extreme weather events
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Flight configurations

Sentinel-1 D STEREOID-A

> 250 km
STEREOID-B

• Stereo formation
• Maximum line-of-sight diversity
• Best for surface current vectors and 3-D surface deformation
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Flight configurations

Sentinel-1 D STEREOID-A

> 250 km
STEREOID-B

• XTI formation
• Close-formation (TanDEM-X style)
• Intended for DEM time-series
• 400 m to 1 km baselines

• ATI formation
• 100 m to 200 m along-track separation
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Radial velocities measured by Sentinel-1
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Extremes?Extremes?

And attempt to contextualize STEREOID (TSCV)

SEASTARSEASTAR

SKIMSKIM
STEREOIDSTEREOID

I am STEREOID 
and I take 
snapshots
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• < 500 kg
• Dual launch in Vega not an issue

Platform

• Split antenna concept
• On-ground Digital Beamforming or 

ATI

Primary payload: radar 
receiver

• For proposal we assumed Cosine’s 
HyperScout (NL)

Secondary payload: VNIR + 
TIR

Space-segment
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10 km

TIR + radar rationale
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Imaging performance: NESZ (IW mode)
sub-swath 2 sub-swath 3sub-swath 1

Position in burst

• NESZ generally 
adequate to good

• Probably a bit 
less gain in 
exchange of 
wider elevation 
beams would be 
better.

• Or SCORE
• + 3dB for ATI 

mode
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Imaging performance: AASR (IW mode)
sub-swath 2 sub-swath 3sub-swath 1

Position in burst

• AASR in -17 to -
18 dB range.

• Quite good given 
small total 
antenna area 

• Sub-swath 
variability due to 
Sentine-1 PRFs
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Imaging performance: RASR

• RASR < -20 dB
• Good, but we need to 

accommodate large 
dynamic ranges (varying 
wind conditions)
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Squint angles (top view)
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Efective squint angle 
limited by bistatic 

geometry
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Squint angles

250 km separation 350 km separation
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System Sensitivity (ideal retrieval)
• 3 km resolution
• 6 m/s wind
• 250 km separation

Doppler velocity uncertainty TSCV vector uncertainty
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System Sensitivity (ideal retrieval)

Doppler velocity uncertainty TSCV vector uncertainty

• 3 km resolution
• 6 m/s wind
• 350 km separation
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System Sensitivity (ideal retrieval)

Doppler velocity uncertainty TSCV vector uncertainty

• 3 km resolution
• 6 m/s wind
• 350 km separation

If I can have 
three 

antennas
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Polarimetry
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At 45° squint geometry

V polarized Tx should we 
equivalent to 45° polarized 

monostatic Tx
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Main sources of systematic (non-geophysical) errors
DCA Short-ATI Long-ATI

Sentinel-1 
pointing Mispointings 

weighted by 
1/beamwidthsCompanion 

mispointing

Formation 
knowledge

Leads to ATI 
phase ofset

Oscillator 
frequency 

ofsets
Is a point of concern, but seems technically solved

But emphasis on gradients

We can mostly live with low-pass 
systematic errors
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20
20

20
22

20
28

Outlook, status

• Phase-0 science and system studies and campaigns currently 

under preparation to be kicked-off in 2019.

• No technical show-stoppers up to know.

• Exciting and challenging science.

• A true Earth Explorer, serving multiple communities 

Phase-0 Phase-A Phase-BCDE Exploitation 

Call for MAG 

members now 

open!!!

Call for MAG 

members now 

open!!!
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Total 
error

Measurement 
noise

Geophysical 
noise

Instrument 
related 

systematic 
errors

Geophysical 
biases

Radiometric
resolution

Product 
resolution

(averaging)

Instrument and/or 
measurement 

calibration

Inversion

Extremely 
challenging

Limiting 
factor??

?
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The value of resolution (for example, vorticity)

12 km grid 4 km grid 2 km grid
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Main open issue: (wind) wave bias

• Problem:

• Approaches being studied
– Measure waves → estimate bias
– Estimate wind from backscatter → model waves → estimate bias
– Exploit polarimetric dependency of wave-bias

•  
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Extreme weather [Stereo]

Surface winds 
+ TSCV

C-band

cross-pol

Stereo 
confgurati

on
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Main open issue: (wind) wave bias

• Problem:•  

TanDEM-X experimental dual-beam Doppler feld
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...but there are possible solutions
Measured Doppler feld

Estimated wind

Wind to Doppler mapping using Asymptotic model
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TSCV retrieval
Measured Doppler feld

- wind-Doppler

Estimated current
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Space-segment side challenges

Formation flying

Formation 
safety

Cross-track 
baseline 

knowledge

Common 
Doppler 

and along-
track 

baseline 
control

Synchronization

Phase Echo 
window

SAR 
performance

Sensitivity Ambiguities
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Cross-track 
baseline 

knowledge
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baseline 
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Synchronization

Phase Echo 
window

SAR 
performance

Sensitivity Ambiguities
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Formation flying: cross-track baseline knowledge

• LOS baseline error translates directly into phase error: •  

Baseline rotation

• R ～ 800 km
• ～ 200 m to 400 m
• Target  ～ 10 cm

  Baseline knowledge 
requirement from 

O(0.1 mm))

Baseline knowledge 
requirement from 

O(0.1 mm))
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Common Doppler loss
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Should be small compared to processed 
Doppler bandwidth.

 

TOPS
SESAME

For SESAME

 O(300 m) 

separation

 OK

For SESAME
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 OK
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Space-segment side challenges

Formation flying

Formation 
safety
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baseline 
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Doppler 
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Synchronization

Phase Echo 
window
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performance
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From TanDEM-X SyncLink

Phase synchronization

Frequency and phase 
synchronization  always a 

critical issue.
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Carrier frequency and phase synchronization: 
lessons we think we have learnt

• GPS tagging/disciplining  Frequency offsets➡

• Data driven (AutoSync, etc)  Relative phase errors➡
– Often good enough
– Issues for sure

• Explicit synchronization link
– Two way synchronization between receivers needed
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Echo window synchronization

time

”PRF signal”
Instrume
nt time

Instrume
nt time

GPSGPS

Radar 
timing
Radar 
timing

position

echo delay

Instrume
nt time

Instrume
nt time

GPSGPS

Radar 
timing
Radar 
timing

position??

reproducible

reproducible

well known

• Situation ok if radar timing derived systematically 
from GPS-referenced instrument time

• Position derived timing potential trouble maker.
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Technical challenges

Formation flying

Formation 
safety

Cross-track 
baseline 

knowledge

Common 
Doppler 

and along-
track 

baseline 
control

Synchronization

Phase Echo 
window

SAR 
performance

Sensitivity Ambiguities
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Imaging performance: NESZ (Imaging mode)
sub-swath 2 sub-swath 3sub-swath 1

Position in burst

• NESZ generally 
adequate to good

• Probably a bit 
less gain in 
exchange of 
wider elevation 
beams would be 
better.

• Or SCORE
• + 3dB for ATI 

mode
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Imaging performance: AASR (imaging mode)
sub-swath 2 sub-swath 3sub-swath 1

Position in burst

• AASR in -17 to -
18 dB range.

• Quite good given 
small total 
antenna area 

• Sub-swath 
variability due to 
Sentine-1 PRFs
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SAR antenna

HyperScout

SAR antenna

HyperScout

Sentinel-1 D STEREOID-A

> 250 km
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