SWOT - Surface Water Ocean Topography 2D fine-resolution sea surface height : links to surface currents

Rosemary Morrow LEGOS, Toulouse, France

Acknowledge : Ernesto Rodriguez SWOT Science and Pi

SWOT (Surface Water & Ocean Topography) NASA/CNES/CSA/UKSA - launch in Sep 2021

Hydrologic science objectives :

- Provide a global inventory of all terrestrial surface water bodies whose surface area exceeds (250m)² (lakes, reservoirs, wetlands) and >10km long river reaches whose width exceeds 100m (requirement).
- Measure global patterns of storage change in terrestrial surface water bodies and river discharge at sub-monthly, seasonal, and annual time scales.

Ocean Scientific objectives

• Observe the **ocean mesoscale and submesoscale** circulation at spatial resolutions of 15 km and larger, providing the missing link between 15 and 200 km for ocean climate studies.

• Observe **coastal and high-latitude tides and internal tides**, important in the ocean's energy budget, and for ocean mixing & dissipation

Technological objective - a new standard for future

SWOT -2D measurement of surface water topography

Ocean Data Products : (after onboard processing)

- Basic oceanographic SSH product (2 km resolution/posting)
- Expanded products
 full corrections,
 wind/waves (2 km)

 Expert high resolution product: SSH (500m resolution/ 250m posting) & SAR

ages (power,

wer varian

250 m

KaRIn LR and HR Modes: Onboard vs. Ground Processing

KaRIn/SWOT Product / Processing / Simulation Levels (illustrated with HR images)

on Mask

SWOT orbits Nominal Launch date : Sept 2021 First 6 months : 1-day orbit : 1st 3 months – instrument checkout 2nd 3 months - Dec-Feb 2022 - Science orbit Ideal for ocean studies of rapidly evolving small mesoscales and submesoscales 60°N 20 30°N 16 12 nou 0° 8 30°S 4 60°S 120°E 180° 120°W 60°W 0° 60°E

3-year 21-day repeat orbit Nominally : Mar 2022 to Mar 2025

Full global coverage 1-day and 10-day sub-cycles for better mesoscale coverage

1st Ocean science objective : small mesoscales and submesoscales (> 15 km

Seen in tracer images ...

Sun-glint 'spirals of the sea'

Vortex radii are 5 km, spectral wavelength 20 km

Tracking large mesoscale eddies – small ones not observed

- Submesoscales now simulated with high resolution models
- $\frac{c}{f}$ need high-resolution observations to validate them

North Pacific simulation (1/36th 100 vertical levels) (Sasaki et al., '13.) :

Winter submesoscales have energetic vertical velocities

North Pacific simulation (1/36th 100 vertical levels) (Sasaki et al., '13.) :

Winter submesoscales have energetic vertical velocities

SSH

already detect high small-scale energy in winter

Models, in-situ and alongtrack altimetric SSH wavenumber spectra show steeper slopes in summer, shallower in winter

SWOT (lower noise) should also observe the 2D anisotropic structure and strain

Alongtrack altimetric SSH spectral

Callies et al., 2017

Vergara et al., 2018 in prep

subsurface fronts and currents is complex

- Altimetric SSH gradients respond to depth-integrated Panom
- Surface fronts in T, S, currents can be shifted northward by Ekman transport
- SKIM will detect the different surface jets, combined with

Sections WOCE SR3 S of Tasmania, Pauthenet et al.,

2D Reconstruction from Mapping

sadioio, co di

tides

a Challenge and Opportunity

SWOT **orbit chosen to resolve tides** – 3 years of SWOT data will provide finer-scale 2D tides

-> first and maybe LAST mission designed for 2D tides

2D signature of Internal tides observed by Barotropic Tide model accor mixing & energy Tide Amplitude (cm)

St. Dev of 7 global tide models, M2

Stammer et al., 2014

~2

Model : HYCOM 1/12° Arbic et al.,

Ponte and Klein (2015) idealized experiments on internal tide incoherence

currents

Assessment of the FES2014 Tidal Currents on the shelves around Australia, Cancet et al 2017

SWOT CalVal - "Adopt-a-crossover" plan

- Resolving 4D ocean Pressure (-> SSH) and velocity variability 15-150 km : incl IWs
- Frontal/submesoscale processes campaigns
 International « Adopt-a-crossover » plan simultaneous in-situ studies
- in 1-day phaseb 2022 light or long-term deploments in case of

Mission Design)

Small mesoscale sea-ice monitoring and freeboard

Sandwell and Smith (1997)

Polar Ice caps

SWOT and surface currents and

- SWOT observes SSH an **SKRM** hages ... need careful processing to remove noise, and separate coherent internal tides
- Expecting good observations of anisotropic 2D structure of small mesoscales, and derived balanced velocities and strain
- Balanced flow currents can be derived from SSH gradients down to 15-40 km wavelength, depending on SWH conditions, reflect depth-integrated gradients. Complementary to SKIM surface currents
- SWOT will provide greatly improved tides and tidal currents after 3 years ... useful for all past and future missions & model validation
- SWOT will provide unique observations of the interactions between balanced flow and internal gravity waves (incl internal tides)

SWOT Measurement

From nadir to wide swath altimetry

\rightarrow Off-Nadir illumination

Ocean Data Products :

- basic oceanographic SSH product (2 km resolution/posting)
- Expanded low resolution product full corrections, wind/waves (2 km)
- expert high resolution product: SSH & SAR images (500m resolution/ 250m posting)

reconstruction

Different SWOT-ST groups exploring techniques to reduce noise in 2D SSH images, and for fine-scale 2D reconstruction

simulator

SWOT 2D high-resolution SSH – capturing the eddy anisotropy and strain

Precise 2D horizontal SSH gradients needed for velocity and vorticity

Toublanc et al. (in prep)

balanced motions or internal gravity waves?

- In mid to high EKE regions => balanced motions dominate scales > 50 km
- Tropics & low energy regions => internal waves dominate

=> Coherent internal tide corrections being developed

