

DopplerScatt Results: What we have learned and implications for a Winds and Currents Mission

E. Rodríguez, A. Wineteer, D. Perkovic-Martin Jet Propulsion Laboratory California Institute of Technology

DopplerScatt Programmtic Overview

Scanning Doppler radar developed under NASA's IIP program

Becoming operational under NASA AITT program by 2019

Data Products:

- 1. Vector ocean surface currents
- 2. Vector ocean surface winds
- 3. Radar brightness maps (sensitive to surfactants such as oil films)

Data products are still being refined under AITT. Will be posted in NASA PODAAC when finished.

Mapping capabilities:

- 25 km swath
- maps 200km x 100km area in about 4 hrs
- 200m data product posting
- Mapping within ~600 m of coast
- ~5-10 cm/s radial velocity precision.
- ~ 1 m/s wind speed, <20° wind direction.

Campaigns flown/planned:

- Oregon coast (2016)
- SPLASH (Submesoscale Processes and Lagrangian Analysis on the Shelf) in Mississippi River Plume
- (CARTHE) & Taylor Oil Platform Plume (NOAA), April 18-28, 2017.
 © 2018 California Institute of Technology. Government sponsorship
- KISS-CANON in Monterey Bay May 1-4, 2017knowledged.

DopplerScatt instrument. It has been deployed on a DOE King Air and will transition to an operational instrument in the NASA King Air B200.

DopplerScatt Vector Estimation

SCIENCE

Sentinel 3 2017-04-18 Courtesy of Copernicus Sentinel, processed by ESA

DopplerScatt surface current U component.

Circulation pattern matches Sentinel 3 color pattern very closely.

Relative Vorticity

Divergence

Derivative PDFs from Shcherbina et al., GRL, 2013

a collected by two ships traveling 1 km apart in parallel for 500 km and using A

SHCHERBINA ET AL.: SUBMESOSCALE TURBULENCE STATISTICS

DopplerScatt Derivative PDFs

Winds

Wind Stress Curl

2017-04-18 ∆: 2.5 km

-0.100 -0.075 -0.050 -0.025 0.000 0.025 0.050 0.075 0.100 stress curl ×10⁴ (N/m³)

Wind Stress Curl vs Relative Vorticity

Coming up

- SMODE: Sub-Mesoscale Ocean Dynamics Experiment
- NASA Earth Ventures Suborbital-3: 2019-2023
- PI Tom Farrar (WHOI)

PHENOMENOLOGY

Correlation

Scatterometer Wind GMF

Wind Speed (m/s) The mean radar backscatter increases with wind speed. The backscatter intensity is modulated as a function of azimuth angle relative to wind

- By combining measurements from multipletaim with angles, wind speed and direction can be estimated. Ku & Ka backscatter have similar characteristics, so both are suitable for wind estimation.
- Experiments have shown that backscatter is proportional to wind stress (although normally parametrized as neutral wind).
 © 2018 California Institute of Technology. Government sponsorship acknowledged.

Radial Velocities Binned by Wind Direction

^{© 2018} California Institute of Technology. Government sponsorship

Hydrodynamic Modulation

Radial Velocity Decomposition

CALIBRATION

Calibration Effects

A simple harmo calibration is mo sufficient

ERROR MODEL VALIDATION

Surface Velocity Random Errors

SPACEBORNE SYSTEM DESIGN

 $\ensuremath{\mathbb{C}}$ 2018 California Institute of Technology. Government sponsorship acknowledged.

Lesson 1: Optimize Pulse Separation by Keeping Pulse Correlation Constant

 $\ensuremath{\mathbb{C}}$ 2018 California Institute of Technology. Government sponsorship acknowledged.

Lesson 2: Minimize Temporal Aliasing by Achieving the Widest Swath Possible

Wide swath & temporal sampling are key

From Chelton et al. 2018 Prog. Ocean. In press

WaCM samples O(2x/day) so that inertial and tidal signal aliasing is minimized in temporal averages.

Lesson 3: Minimize Mapping Error by Coverage Minimizing Gaps

By varying the PRF, its is easier to achieve swath continuity

WaCM Performance at 5km Sampling

Antenna length: 4m (blue), 5m (red) Peak Transmit Power: 100 W: solid lines 400 W: circles 1.5 kW: empty squares

References

Estimating Ocean Vector Winds and Currents Using a Ka-Band Pencil-Beam Doppler Scatterometer

Volume 10 · Issue 4 | April 2018

mdpi.com/journal/remotesensing ISSN 2072-4292

Article On the Optimal Design of Doppler Scatterometers

Ernesto Rodríguez 1*

- ¹ Jet Propulsion Laboratory, California Institute of Technology
- * Correspondence: ernesto.rodriguez@jpl.nasa.gov; Tel.: +1-818-354-5668

Academic Editor: name Version October 4, 2018 submitted to Remote Sens.

https://www.preprints.org/manuscript/ 201810.0106/v1

BACKUPS

 $\ensuremath{\mathbb{C}}$ 2018 California Institute of Technology. Government sponsorship acknowledged.

DopplerScatt Wind Validation

What velocity are we measuring?

- Radar sensitive to phase speed ~0.5 cm capillary waves
- Free wave phase speed: ~31 cm/s. Capillary waves can also be generated as bound waves due to straining: will travel at straining wave phase speed (low wind speeds).
- Phase speed modulated by surface currents. Winds will add Stokes drift & surface drift.
- Gravity wave orbital velocity is added to capillary wave velocity. When averaging over surface waves, velocity is weighted (by radar brightness) spatial average.
- Brightness not homogeneous over long wave:
 - Hydrodynamic modulation due to 1) capillary amplitude modulation by

Radar Brightness Modulation

Observation Model

 $\eta = \sum_{n} a_{n} \cos \Theta_{n} \eta_{x}$ In phase with *u* $\int \frac{\delta \sigma_{0}}{\sigma_{0}} \Big|_{\text{Hydro}} = m_{r} \sum_{n} a_{n} k_{xn} \cos \Theta_{n} - m_{i} \sum_{n} a_{n} k_{xn} \sin \Theta_{n}$ Hydrodynamic modulation

$$\frac{\delta \sigma_0}{\sigma_0}\Big|_{\text{Tilt}} = -m_T \cos \phi_r \sum_n a_n k_{xn} \sin \Theta_n = \frac{\partial \log \sigma_0}{\partial \theta} \cos \phi_r \eta_x$$
 Tilt modulatio

 $\delta v_S = U_S \left[\cos \phi_r m_r + \cot \theta \left(m_i + \cos \phi_r m_T \right) \right]$ Net gravity wave contribut

$$U_S = \int dk \; k_x \omega F(k_x)$$
 Stokes drift

Upwind/Downwind Velocities vs Theory

DopplerScatt GoM Eddy Validation

U

V

-1.5

SPLASH 2017-04-18

DopplerScatt

2017-04-18

NCOM

1.5

-1.0 -0.5 0.0 0.5 1.0 1.5 -1.5 -1.0 -0.5 0.0 0.5 1.0 V (m/s) V (m/s) © 2017 California Institute of Technology. Government sponsorship acknowledged.

Strain Rate

Fast Internal Wave Changes

Doppler Current Measurement Concept

Vector currents are estimated by

oppler Phase Difference: $\Delta \Phi = 2k\Delta r = f_D \delta t$ combining multiple (≥ 2) azimuth adial velocity component: $v_r = \Delta r/\delta t = \Delta \Phi/(2k \delta \Phi)$ servations and projecting vector to the ocean surface.

- Radars provide coherent measurements: both the phase and the amplitude of a scattered signal are measured.
- The phase is proportional to the 2-way travel time (or range)
- The amplitude is proportional to the scattering strength of the traget
- Doppler measurements, f_D , are obtained by measuring the phase difference between pulses, $\Delta \Phi$. Noise is reduced by combining multiple pulses © 2018 California Institute of Technology. Government sponsorship